\(\int \frac {x^3}{(a+b x^2) (c+d x^2)^{3/2}} \, dx\) [714]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 24, antiderivative size = 77 \[ \int \frac {x^3}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=-\frac {c}{d (b c-a d) \sqrt {c+d x^2}}+\frac {a \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{\sqrt {b} (b c-a d)^{3/2}} \]

[Out]

a*arctanh(b^(1/2)*(d*x^2+c)^(1/2)/(-a*d+b*c)^(1/2))/(-a*d+b*c)^(3/2)/b^(1/2)-c/d/(-a*d+b*c)/(d*x^2+c)^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {457, 79, 65, 214} \[ \int \frac {x^3}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {a \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{\sqrt {b} (b c-a d)^{3/2}}-\frac {c}{d \sqrt {c+d x^2} (b c-a d)} \]

[In]

Int[x^3/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

-(c/(d*(b*c - a*d)*Sqrt[c + d*x^2])) + (a*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(Sqrt[b]*(b*c -
a*d)^(3/2))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {x}{(a+b x) (c+d x)^{3/2}} \, dx,x,x^2\right ) \\ & = -\frac {c}{d (b c-a d) \sqrt {c+d x^2}}-\frac {a \text {Subst}\left (\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx,x,x^2\right )}{2 (b c-a d)} \\ & = -\frac {c}{d (b c-a d) \sqrt {c+d x^2}}-\frac {a \text {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x^2}\right )}{d (b c-a d)} \\ & = -\frac {c}{d (b c-a d) \sqrt {c+d x^2}}+\frac {a \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {b c-a d}}\right )}{\sqrt {b} (b c-a d)^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.99 \[ \int \frac {x^3}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {c}{d (-b c+a d) \sqrt {c+d x^2}}+\frac {a \arctan \left (\frac {\sqrt {b} \sqrt {c+d x^2}}{\sqrt {-b c+a d}}\right )}{\sqrt {b} (-b c+a d)^{3/2}} \]

[In]

Integrate[x^3/((a + b*x^2)*(c + d*x^2)^(3/2)),x]

[Out]

c/(d*(-(b*c) + a*d)*Sqrt[c + d*x^2]) + (a*ArcTan[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[-(b*c) + a*d]])/(Sqrt[b]*(-(b*
c) + a*d)^(3/2))

Maple [A] (verified)

Time = 2.93 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.13

method result size
pseudoelliptic \(\frac {a \arctan \left (\frac {b \sqrt {d \,x^{2}+c}}{\sqrt {\left (a d -b c \right ) b}}\right ) d \sqrt {d \,x^{2}+c}+c \sqrt {\left (a d -b c \right ) b}}{\left (a d -b c \right ) \sqrt {\left (a d -b c \right ) b}\, d \sqrt {d \,x^{2}+c}}\) \(87\)
default \(-\frac {1}{b d \sqrt {d \,x^{2}+c}}-\frac {a \left (-\frac {b}{\left (a d -b c \right ) \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {2 d \sqrt {-a b}\, \left (2 d \left (x -\frac {\sqrt {-a b}}{b}\right )+\frac {2 d \sqrt {-a b}}{b}\right )}{\left (a d -b c \right ) \left (-\frac {4 d \left (a d -b c \right )}{b}+\frac {4 d^{2} a}{b}\right ) \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}\right )}{2 b^{2}}-\frac {a \left (-\frac {b}{\left (a d -b c \right ) \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}-\frac {2 d \sqrt {-a b}\, \left (2 d \left (x +\frac {\sqrt {-a b}}{b}\right )-\frac {2 d \sqrt {-a b}}{b}\right )}{\left (a d -b c \right ) \left (-\frac {4 d \left (a d -b c \right )}{b}+\frac {4 d^{2} a}{b}\right ) \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}+\frac {b \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{\left (a d -b c \right ) \sqrt {-\frac {a d -b c}{b}}}\right )}{2 b^{2}}\) \(746\)

[In]

int(x^3/(b*x^2+a)/(d*x^2+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

(a*arctan(b*(d*x^2+c)^(1/2)/((a*d-b*c)*b)^(1/2))*d*(d*x^2+c)^(1/2)+c*((a*d-b*c)*b)^(1/2))/(a*d-b*c)/((a*d-b*c)
*b)^(1/2)/d/(d*x^2+c)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 194 vs. \(2 (65) = 130\).

Time = 0.27 (sec) , antiderivative size = 428, normalized size of antiderivative = 5.56 \[ \int \frac {x^3}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\left [-\frac {{\left (a d^{2} x^{2} + a c d\right )} \sqrt {b^{2} c - a b d} \log \left (\frac {b^{2} d^{2} x^{4} + 8 \, b^{2} c^{2} - 8 \, a b c d + a^{2} d^{2} + 2 \, {\left (4 \, b^{2} c d - 3 \, a b d^{2}\right )} x^{2} - 4 \, {\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt {b^{2} c - a b d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \, {\left (b^{2} c^{2} - a b c d\right )} \sqrt {d x^{2} + c}}{4 \, {\left (b^{3} c^{3} d - 2 \, a b^{2} c^{2} d^{2} + a^{2} b c d^{3} + {\left (b^{3} c^{2} d^{2} - 2 \, a b^{2} c d^{3} + a^{2} b d^{4}\right )} x^{2}\right )}}, \frac {{\left (a d^{2} x^{2} + a c d\right )} \sqrt {-b^{2} c + a b d} \arctan \left (-\frac {{\left (b d x^{2} + 2 \, b c - a d\right )} \sqrt {-b^{2} c + a b d} \sqrt {d x^{2} + c}}{2 \, {\left (b^{2} c^{2} - a b c d + {\left (b^{2} c d - a b d^{2}\right )} x^{2}\right )}}\right ) - 2 \, {\left (b^{2} c^{2} - a b c d\right )} \sqrt {d x^{2} + c}}{2 \, {\left (b^{3} c^{3} d - 2 \, a b^{2} c^{2} d^{2} + a^{2} b c d^{3} + {\left (b^{3} c^{2} d^{2} - 2 \, a b^{2} c d^{3} + a^{2} b d^{4}\right )} x^{2}\right )}}\right ] \]

[In]

integrate(x^3/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/4*((a*d^2*x^2 + a*c*d)*sqrt(b^2*c - a*b*d)*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c
*d - 3*a*b*d^2)*x^2 - 4*(b*d*x^2 + 2*b*c - a*d)*sqrt(b^2*c - a*b*d)*sqrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^
2)) + 4*(b^2*c^2 - a*b*c*d)*sqrt(d*x^2 + c))/(b^3*c^3*d - 2*a*b^2*c^2*d^2 + a^2*b*c*d^3 + (b^3*c^2*d^2 - 2*a*b
^2*c*d^3 + a^2*b*d^4)*x^2), 1/2*((a*d^2*x^2 + a*c*d)*sqrt(-b^2*c + a*b*d)*arctan(-1/2*(b*d*x^2 + 2*b*c - a*d)*
sqrt(-b^2*c + a*b*d)*sqrt(d*x^2 + c)/(b^2*c^2 - a*b*c*d + (b^2*c*d - a*b*d^2)*x^2)) - 2*(b^2*c^2 - a*b*c*d)*sq
rt(d*x^2 + c))/(b^3*c^3*d - 2*a*b^2*c^2*d^2 + a^2*b*c*d^3 + (b^3*c^2*d^2 - 2*a*b^2*c*d^3 + a^2*b*d^4)*x^2)]

Sympy [F]

\[ \int \frac {x^3}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\int \frac {x^{3}}{\left (a + b x^{2}\right ) \left (c + d x^{2}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(x**3/(b*x**2+a)/(d*x**2+c)**(3/2),x)

[Out]

Integral(x**3/((a + b*x**2)*(c + d*x**2)**(3/2)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x^3}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x^3/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.01 \[ \int \frac {x^3}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=-\frac {\frac {a d \arctan \left (\frac {\sqrt {d x^{2} + c} b}{\sqrt {-b^{2} c + a b d}}\right )}{\sqrt {-b^{2} c + a b d} {\left (b c - a d\right )}} + \frac {c}{\sqrt {d x^{2} + c} {\left (b c - a d\right )}}}{d} \]

[In]

integrate(x^3/(b*x^2+a)/(d*x^2+c)^(3/2),x, algorithm="giac")

[Out]

-(a*d*arctan(sqrt(d*x^2 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*(b*c - a*d)) + c/(sqrt(d*x^2 + c)*(
b*c - a*d)))/d

Mupad [B] (verification not implemented)

Time = 5.57 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.83 \[ \int \frac {x^3}{\left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx=\frac {c}{d\,\sqrt {d\,x^2+c}\,\left (a\,d-b\,c\right )}+\frac {a\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {d\,x^2+c}}{\sqrt {a\,d-b\,c}}\right )}{\sqrt {b}\,{\left (a\,d-b\,c\right )}^{3/2}} \]

[In]

int(x^3/((a + b*x^2)*(c + d*x^2)^(3/2)),x)

[Out]

c/(d*(c + d*x^2)^(1/2)*(a*d - b*c)) + (a*atan((b^(1/2)*(c + d*x^2)^(1/2))/(a*d - b*c)^(1/2)))/(b^(1/2)*(a*d -
b*c)^(3/2))